Many-to-many voice conversion based on multiple non-negative matrix factorization
نویسندگان
چکیده
We present in this paper an exemplar-based Voice Conversion (VC) method using Non-negative Matrix Factorization (NMF), which is different from conventional statistical VC. NMF-based VC has advantages of noise robustness and naturalness of converted voice compared to Gaussian Mixture Model (GMM)based VC. However, because NMF-based VC is based on parallel training data of source and target speakers, we cannot convert the voice of arbitrary speakers in this framework. In this paper, we propose a many-to-many VC method that makes use of Multiple Non-negative Matrix Factorization (Multi-NMF). By using Multi-NMF, an arbitrary speaker’s voice is converted to another arbitrary speaker’s voice without the need for any input or output speaker training data. We assume that this method is flexible because we can adopt it to voice quality control or noise robust VC.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملParallel Dictionary Learning Using a Joint Density Restricted Boltzmann Machine for Sparse-representation-based Voice Conversion
In voice conversion, sparse-representation-based methods have recently been garnering attention because they are, relatively speaking, not affected by over-fitting or over-smoothing problems. In these approaches, voice conversion is achieved by estimating a sparse vector that determines which dictionaries of the target speaker should be used, calculated from the matching of the input vector and...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملParallel Dictionary Learning for Voice Conversion Using Discriminative Graph-Embedded Non-Negative Matrix Factorization
This paper proposes a discriminative learning method for Nonnegative Matrix Factorization (NMF)-based Voice Conversion (VC). NMF-based VC has been researched because of the natural-sounding voice it produces compared with conventional Gaussian Mixture Model (GMM)-based VC. In conventional NMF-based VC, parallel exemplars are used as the dictionary; therefore, dictionary learning is not adopted....
متن کاملNoise-Robust Voice Conversion Based on Sparse Spectral Mapping Using Non-negative Matrix Factorization
This paper presents a voice conversion (VC) technique for noisy environments based on a sparse representation of speech. Sparse representation-based VC using Non-negative matrix factorization (NMF) is employed for noise-added spectral conversion between different speakers. In our previous exemplar-based VC method, source exemplars and target exemplars are extracted from parallel training data, ...
متن کامل